Hand-Object Contact Consistency Reasoning for Human Grasps Generation

Hanwen Jiang* Shaowei Liu* Jiashun Wang Xiaolong Wang UC San Diego

Accepted at ICCV'2021 (oral presentation)

Motivation

• Understanding how to grasp 3D objects

Motivation

• Possible applications

Realistic VR Experiences

Holl et al, VR '18

Realistic Animation

Zhang et al, SIGGRAPH '21

Robot Imitation Learning

Qin et al, Arxiv '21

Task Definition

• Human grasp generation

Input

Object point clouds (Sampled on mesh)

Output

Human grasp (Hand Mesh)

Task Definition

• Human grasp generation

Input Object point clouds (Sampled on mesh) Output

Human grasp (Hand Mesh) Input + Output

* One object can have multiple different 6-Dof poses in the world coordinate.

Targets, problems and solution

- Targets:
 - Physical plausibility
 - Natural hand poses
- Problem:
 - Human hand has higher degree-of-freedom than grippers
- Solution:
 - Reason contact consistency between hand-object

Contact consistency

- Hand-centric:
 - Hand should contact object surface
- Object-centric:
 - Object possible contact regions should be touched

Contact consistency

- For out-of-domain objects
 - Contact consistency reasoning can improve generalization ability

We reason contact consistency between hand-object from two aspects

- Framework design
- Loss function design

Framework

- We propose two networks
- GraspCVAE
 - Target: Generating grasps
 - In training, it learns to reconstruct hands with both hand-objects as inputs

Framework

- We propose two networks
- GraspCVAE
 - Target: Generating grasps
 - In testing, it generates grasps given only the object as input

Framework

- We propose two networks
- ContactNet
 - Target: Predicting object contact map
 - With both hand-object as inputs

* Contact Map: Brighter regions should be more close to hand.

Framework: (1) Training

• Train the two networks separately on ground-truth data

Framework: (1) Training

• Train the two networks separately on ground-truth data

Training Stage

* Contact Map: Brighter regions should be more close to hand.

Framework: (2) Testing with Test-Time Adaptation (TTA)

- Unify the two networks in a cascade manner
- ContactNet: Provides self-supervision signals

• Step 1: Generate an initial grasp by GraspCVAE

• Step 2: Generate a target contact map by ContactNet

Testing

• Step 3: Leverage the consistency between two outputs as a selfsupervised loss

• Step 4: Learn from the consistency loss for 10 iterations

Loss functions

- An object-centric loss: ensures object common contact regions to be touched by hand
- A hand-centric loss: encourages hand touching object surface

- Train with ObMan [1] training set
- Test on
 - ObMan [1] testset (in-domain)
 - HO-3D [2] and FPHA [3] datasets (out-of-domain)

Hasson, Yana et al. "Learning Joint Reconstruction of Hands and Manipulated Objects." CVPR (2019).
Hampali, Shreyas et al. "HOnnotate: A Method for 3D Annotation of Hand and Object Poses." CVPR (2020).
Garcia-Hernando, Guillermo et al. "First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Annotations." CVPR (2018).

First, we show examples of generated grasps for both in-domain and out-of-domain objects.

Generated grasps given in-domain objects

Example 1

Example 2

Generated grasps given in-domain objects

Generated grasps given out-of-domain objects

Generated grasps given out-of-domain objects

Before: hand penetrates into the object.

Iteration 2: penetration decreases.

Iteration 5: penetration decreases.

Iteration 8: hand is repelled out of the object.

Iteration 10: hand become closer to object surface.

Before

After

Object contact regions become larger (grasps more stable).

* Contact Map: Brighter regions should be more close to hand.

Generated diverse grasps

Quantitative evaluation metrics

- Penetration (\downarrow)
- Grasp displacement in the simulation (\downarrow)
- Perceptual score (\uparrow)
- Contact measurements (\uparrow)
 - Contact ratio, number of fingers in contact, etc.

Grasp simulation

(measures grasp stability)

Overall performance (in-domain objects)

		Obman		
		GT	GF [25]	Ours
Penetration	Depth $(cm) \downarrow$	0.01	0.56	0.46
	Volume $(cm^3)\downarrow$	1.70	6.05	5.12
Grasp Displace.	Mean $(cm) \downarrow$	1.66	2.07	1.52
	Variance $(cm) \downarrow$	± 2.44	± 2.81	\pm 2.29
Perceptual Score	$\{1,,5\}\uparrow$	3.24	3.02	3.54
Contact	Ratio (%) \uparrow	100	89.40	99.97

Karunratanakul, Korrawe et al. "Grasping Field: Learning Implicit Representations for Human Grasps." *3DV* (2020).

Overall performance (out-of-domain objects)

		HO-3D		
		GT	GF [25]	Ours
Penetration	Depth $(cm) \downarrow$	2.94	1.46	1.05
	Volume $(cm^3)\downarrow$	6.08	14.90	4.58
Grasp Displace.	Mean $(cm) \downarrow$	4.31	3.45	3.21
	Variance $(cm) \downarrow$	± 4.42	\pm 3.92	± 3.79
Perceptual Score	$\{1,,5\}\uparrow$	3.18	3.29	3.50
Contact	Ratio (%) \uparrow	91.60	90.10	99.61

Karunratanakul, Korrawe et al. "Grasping Field: Learning Implicit Representations for Human Grasps." *3DV* (2020).

Ablation on TTA

Ablation on TTA

- Optimization
 - Fix network parameters, directly optimize hand parameters
- TTA:
 - Optimize the network parameters
 - Offline: Re-initiate the network weights for each sample
 - Online: Re-initiate the network after many samples

Ablation on TTA (out-of-domain objects)

	Penetration \downarrow		Grasp Displace. \downarrow	Contact \uparrow
	Depth	Volume	Mean \pm Variance	Ratio (%)
w/o TTA	0.94	4.21	4.98 ± 4.48	86.63
Optimization	1.07	4.59	4.14 ± 4.31	91.45
TTA-offline	1.09	4.88	3.80 ± 4.20	92.31
TTA-online	1.05	4.58	$\textbf{3.21} \pm \textbf{3.79}$	99.61

Summary

- We reason contact consistency between hand-object
 - In both training and testing
 - For more realistic and generalizable human grasp generation

Thanks for listening!